JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **26**, No. 3, August 2013

HILBERT 3-CLASS FIELD TOWERS OF REAL CUBIC FUNCTION FIELDS

HWANYUP JUNG*

ABSTRACT. In this paper we study the infiniteness of Hilbert 3class field tower of real cubic function fields over $\mathbb{F}_q(T)$, where $q \equiv 1 \mod 3$. We also give various examples of real cubic function fields whose Hilbert 3-class field tower is infinite.

1. Introduction

Let $k = \mathbb{F}_q(T)$ be a rational function field over the finite field \mathbb{F}_q of qand $\mathbb{A} = \mathbb{F}_q[T]$. For a finite separable extension F of k, write \mathcal{O}_F for the integral closure of \mathbb{A} in F. Let ∞ be the infinite place of k and $S_{\infty}(F)$ be the set of places of F lying over ∞ . Let ℓ be a prime number. The *Hilbert* ℓ -class field of F is the maximal unramified abelian ℓ -extension of F in which every places $\nu_{\infty} \in S_{\infty}(F)$ splits completely. Let $F_0^{(\ell)} = F$ and inductively, $F_{n+1}^{(\ell)}$ be the Hilbert ℓ -class field of $F_n^{(\ell)}$ for $n \geq 0$ (cf. [4]). Then the sequence of fields

$$F_0^{(\ell)} = F \subset F_1^{(\ell)} \subset \dots \subset F_n^{(\ell)} \subset \dots$$

is called the Hilbert ℓ -class field tower of F and we say that the Hilbert ℓ -class field tower of F is infinite if $F_n^{(\ell)} \neq F_{n+1}^{(\ell)}$ for each $n \geq 0$. For a multiplicative abelian group A, let $r_{\ell}(A) = \dim_{\mathbb{F}_{\ell}}(A/A^{\ell})$ be the the ℓ -rank of A. Let $\mathcal{C}l_F$ and \mathcal{O}_F^* be the ideal class group and the group of units of \mathcal{O}_F , respectively. Schoof [6] proved that the Hilbert ℓ -class field tower of F is infinite if

(1.1)
$$r_{\ell}(\mathcal{C}l_F) \ge 2 + 2\sqrt{r_{\ell}(\mathcal{O}_F^*)} + 1.$$

Received March 18, 2013; Accepted July 08, 2013.

²⁰¹⁰ Mathematics Subject Classification: Primary 11R58, 11R60, 11R18.

Key words and phrases: Hilbert 3-class field tower, real cubic function field.

This work was conducted during the research year of the Chungbuk National University in 2012.

Hwanyup Jung

In [1], Ahn and Jung studied the infiniteness of the Hilbert 2-class field tower of imaginary quadratic function fields. Assume that q is odd with $q \equiv 1 \mod 3$. In [3], we studied the infiniteness of the Hilbert 3-class field tower of imaginary cubic function fields. By a *real cubic function* field, we always mean a finite (geometric) cyclic extension F over k of degree 3 in which ∞ splits completely. The aim of this paper is to study the infiniteness of the Hilbert 3-class field tower of real cubic function fields and give a various examples of real cubic function fields which have infinite Hilbert 3-class field tower.

2. Preliminaries

2.1. Rédei matrix and the invariant λ_2

Assume that q is odd with $q \equiv 1 \mod 3$. Fix a generator γ of \mathbb{F}_q^* . Let $\mathcal{P}(\mathbb{A})$ be the set of all monic irreducible polynomials in \mathbb{A} . Assume that we have given a total ordering "<" on the set $\mathcal{P}(\mathbb{A})$ such that P < Q for any $P, Q \in \mathcal{P}(\mathbb{A})$ with deg $P < \deg Q$. Then any real cubic function field F can be written as $F = k(\sqrt[3]{D})$, where $D = P_1^{r_1} \cdots P_t^{r_t}$ with $P_i \in \mathcal{P}(\mathbb{A}), r_i \in \{1, 2\}$ for $2 \leq i \leq t$ and $3 | \deg D$. If we assume that $P_1 < \cdots < P_t$ and $r_1 = 1$, then D is uniquely determined by F, and we denote $D_F = D$. We say that D_F is special if $3 | \deg P_i$ for all $1 \leq i \leq t$. Let σ be a generator of G = Gal(F/k). We have

$$(2.1)r_3(\mathcal{C}l_F) = \dim_{\mathbb{F}_3} \left(\mathcal{C}l_F / \mathcal{C}l_F^{(1-\sigma)} \right) + \dim_{\mathbb{F}_3} \left(\mathcal{C}l_F^{(1-\sigma)} / \mathcal{C}l_F^{(1-\sigma)^2} \right).$$

Put

$$\lambda_i(F) = \dim_{\mathbb{F}_3} \left(\mathcal{C}l_F^{(1-\sigma)^{i-1}} / \mathcal{C}l_F^{(1-\sigma)^i} \right) \quad (i = 1, 2).$$

For $0 \neq N \in \mathbb{A}$, write $\omega(N)$ for the number of distinct monic irreducible divisors of N. Then, by the Genus theory (see [2, Corollary 3.5]), we have

(2.2)
$$\lambda_1(F) = \begin{cases} \omega(D_F) - 1, & \text{if } D_F \text{ is special,} \\ \omega(D_F) - 2, & \text{otherwise.} \end{cases}$$

Let $\eta = \gamma^{\frac{q-1}{3}}$. Let M_F be the $t \times t$ matrix $(e_{ij})_{1 \leq i,j \leq t}$ over \mathbb{F}_3 , where, for $1 \leq i \neq j \leq t$, $e_{ij} \in \mathbb{F}_3$ is defined by $\eta^{e_{ij}} = (\frac{P_i}{P_j})_3$, and the diagonal entries e_{ii} are defined to satisfy the relation $\sum_{i=1}^t r_j e_{ij} = 0$. Let $d_i \in \mathbb{F}_3$ be defined by $d_i \equiv \deg P_i \mod 3$ for $1 \leq i \leq t$. We associate a $(t+1) \times t$ matrix R_F over \mathbb{F}_3 to F as follows:

518

- If D_F is non-special or D_F is special with $\gamma \in N_{F/k}(\mathcal{O}_F^*)$, then R_F is the $(t+1) \times t$ matrix obtained from M_F by adjoining (d_1, \ldots, d_t) in last row.
- If D_F is special with $\gamma \notin N_{F/k}(\mathcal{O}_F^*)$, then R_F is the $(t+1) \times t$ matrix obtained from M_F by adjoining (e_{B1}, \ldots, e_{Bt}) in last row, where $B \in \mathbb{A}$ is a monic polynomial such that $B = \mathcal{N}(\mathfrak{B}), \mathfrak{B}^{\sigma-1} = x\mathcal{O}_F,$ $N_{F/k}(x) \in \mathbb{F}_q^* \setminus \mathbb{F}_q^{*3}$ and $e_{Bi} \in \mathbb{F}_3$ is defined by $\eta^{e_{iB}} = (\frac{P_i}{B})$.

Then we have (see [2, Corollary 3.8])

(2.3)
$$\lambda_2(F) = \omega(D_F) - 1 - \operatorname{rank} R_F$$

Hence, by inserting (2.2) and (2.3) into (2.1), we have

(2.4)
$$r_3(\mathcal{C}l_F) = \begin{cases} 2\omega(D_F) - 2 - \operatorname{rank} R_F, & \text{if } D_F \text{ is special,} \\ 2\omega(D_F) - 3 - \operatorname{rank} R_F, & \text{otherwise.} \end{cases}$$

2.2. Some lemmas

Let E and K be finite (geometric) separable extensions of k such that E/K is a cyclic extension of degree ℓ , where ℓ is a prime number not dividing q. Let $\gamma_{E/K}$ be the number of prime ideals of \mathcal{O}_K that ramify in E and $\rho_{E/K}$ be the number of places $\mathfrak{p}_{\infty} \in S_{\infty}(K)$ that ramify or inert in E. If

(2.5)
$$\gamma_{E/K} \ge |S_{\infty}(K)| - \rho_{E/K} + 3 + 2\sqrt{\ell}|S_{\infty}(K)| + (1-\ell)\rho_{E/K} + 1$$

then E has infinite Hilbert ℓ -class field tower (see [1, Proposition 2.1]). By using this criterion, we give some sufficient conditions for a real cubic function field to have infinite Hilbert 3-class field tower. For $D \in \mathbb{A}$, write $\pi(D)$ for the set of all monic irreducible divisors of D.

LEMMA 2.1. Assume that q is odd with $q \equiv 1 \mod 3$. Let F be a real cubic function field over k. If there is a nonconstant monic polynomial D' such that $3 | \deg D', \pi(D') \subset \pi(D_F)$ and $(\frac{D'}{P_i})_3 = 1$ for $P_i \in \pi(D) \setminus \pi(D')$ $(1 \leq i \leq 5)$, then F has infinite Hilbert 3-class field tower.

Proof. Put $K = k(\sqrt[3]{D'})$ and E = FK. Since $\gamma_{E/K} \ge 15$, $|S_{\infty}(K)| = 3$ and $\rho_{E/K} = 0$, the inequality (2.5) is satisfied, so E has infinite Hilbert 3-class field tower. By hypothesis, P_1, P_2, P_3, P_4, P_5 and ∞ split completely in K, so E is contained in $F_1^{(3)}$. Hence F also has infinite Hilbert 3-class field tower.

LEMMA 2.2. Assume that q is odd with $q \equiv 1 \mod 3$. Let F be a real cubic function field over k. If there are two distinct nonconstant monic polynomials D_1, D_2 such that $3 | \deg D_i, \pi(D_i) \subset \pi(D_F)$ for i = 1, 2 and

Hwanyup Jung

 $(\frac{D_1}{P_j})_3 = (\frac{D_2}{P_j})_3 = 1$ for some $P_j \in \pi(D_F) \setminus (\pi(D_1) \cup \pi(D_2))$ $(1 \le j \le 3)$, then F has infinite Hilbert 3-class field tower.

Proof. Put $K = k(\sqrt[3]{D_1}, \sqrt[3]{D_2})$ and E = FK. Since $\gamma_{E/K} \ge 27$, $|S_{\infty}(K)| = 9$ and $\rho_{E/K} = 0$, the inequality (2.5) is satisfied, so E has infinite Hilbert 3-class field tower. By hypothesis, P_1, P_2, P_3 and ∞ split completely in K, so E is contained in $F_1^{(3)}$. Hence F also has infinite Hilbert 3-class field tower.

3. Hilbert 3-class field tower of real cubic function field

Assume that q is odd with $q \equiv 1 \mod 3$. In this section we give several sufficient conditions for real cubic function fields to have infinite Hilbert 3-class field tower and examples.

Let F be a real cubic function field. Since $r_3(\mathcal{O}_F^*) = 2$, by Schoof's theorem, the Hilbert 3-class field tower of F is infinite if $r_3(\mathcal{C}l_F) \ge 6$. By (2.2), F has infinite Hilbert 3-class field tower if $\omega(D_F) \ge 7$ or $\omega(D_F) \ge 8$ according as D_F is special or not. We will consider the cases that $\omega(D_F) \le 6$ if D_F is special and $\omega(D_F) \le 7$ if D_F is non-special.

THEOREM 3.1. Assume that q is odd with $q \equiv 1 \mod 3$. Let F be a real cubic function field.

- (i) Assume that D_F is special. If $\omega(D_F) = 6$ with rank $R_F \leq 4$, $\omega(D_F) = 5$ with rank $R_F \leq 2$ or $\omega(D_F) = 4$ with rank $R_F = 0$, then F has infinite Hilbert 3-class field tower.
- (ii) Assume that D_F is non-special. If $\omega(D_F) = 7$ with rank $R_F \leq 5$, $\omega(D_F) = 6$ with rank $R_F \leq 3$ or $\omega(D_F) = 5$ with rank $R_F \leq 1$, then F has infinite Hilbert 3-class field tower.

Proof. By using the Schoof's theorem with (2.4), we see that F has infinite Hilbert 3-class field tower if

$$\operatorname{rank} R_F \leq \begin{cases} 2\omega(D_F) - 8, & \text{if } D_F \text{ is special,} \\ 2\omega(D_F) - 9, & \text{if } D_F \text{ is non-special.} \end{cases}$$

Hence the result follows immediately.

THEOREM 3.2. Assume that q is odd with $q \equiv 1 \mod 3$. Let F be a real cubic function field with $\omega(D_F) \geq 6$. If there exists $Q \in \pi(D_F)$ with $3|\deg Q$ and $P_i \in \pi(D_F) \setminus \{Q\}$ such that $(\frac{Q}{P_i})_3 = 1$ $(1 \leq i \leq 5)$, then F has infinite Hilbert 3-class field tower.

520

Proof. By applying Lemma 2.1 with D' = Q, we see that F has infinite Hilbert 3-class field tower.

EXAMPLE 3.3. Let $k = \mathbb{F}_7(T)$ and $\mathbb{A} = \mathbb{F}_7[T]$. Take $Q = T^3 + 2T^2 + 1$, $P_1 = T$, $P_2 = T + 2$, $P_3 = T + 3$, $P_4 = T^2 + 2$ and $P_5 = T^3 + T + 1$. By simple computations, we see that $(\frac{Q}{P_i})_3 = 1$ for $1 \le i \le 5$. Then, for any $D = Q^e P_1^{e_1} P_2^{e_2} P_3^{e_3} P_4^{e_4} P_5^{e_5}$ with $e, e_i \in \{1, 2\}$ and $e_1 + e_2 + e_3 + 2e_4 \equiv$ $0 \mod 3$, $k(\sqrt[3]{D})$ is a real cubic function field whose Hilbert 3-class field tower is infinite by Theorem 3.2.

Let N(n,q) be the number of monic irreducible polynomials of degree n in $\mathbb{A} = \mathbb{F}_q[T]$. Then it satisfies the following one ([5, Corollary of Proposition 2.1]):

$$N(n,q) = \frac{1}{n} \sum_{d|n} \mu(d) q^{\frac{n}{d}}.$$

For $\alpha \in \mathbb{F}_q^*$, let $\mathcal{N}(n, \alpha, q)$ be the set of monic irreducible polynomials of degree n with constant term α in $\mathbb{A} = \mathbb{F}_q[T]$ and $N(n, \alpha, q) = |\mathcal{N}(n, \alpha, q)|$. Define

$$D_n = \{r : r | (q^n - 1), r \nmid (q^m - 1) \text{ for } m < n \}.$$

For each $r \in D_n$, let $r = m_r d_r$, where $d_r = \gcd(r, \frac{q^n-1}{q-1})$. In [7], Yucas proved that $N(n, \alpha, q)$ satisfies the following formula:

(3.1)
$$N(n,\alpha,q) = \frac{1}{n\phi(f)} \sum_{\substack{r \in D_n \\ m_r = f}} \phi(r),$$

where f is the order of α in \mathbb{F}_q^* .

EXAMPLE 3.4. Let $k = \mathbb{F}_7(T)$ and $\mathbb{A} = \mathbb{F}_7[T]$. We will find the number N(3, 1, 7). We have

$$D_{3} = \{r : r | (7^{3}-1), r \nmid (7^{2}-1), r \nmid (7-1)\} = \{9, 18, 19, 38, 57, 114, 171, 342\}$$

and $m_{9} = 1, m_{18} = 6, m_{19} = 1, m_{38} = 2, m_{57} = 1, m_{114} = 2, m_{171} = 3, m_{342} = 6.$ Since the order of 1 in \mathbb{F}_{7}^{*} is 1, by (3.1), we have

$$N(3,1,7) = \frac{1}{3\phi(1)} \left(\phi(9) + \phi(19) + \phi(57)\right) = 20.$$

Hence, $\mathcal{N}(3,1,7)$ consists of exactly 20 distinct monic irreducible polynomials. Take Q = T, $P_1 = T^2 + \alpha T + 1$ with $\alpha \in \{0,3,4\}$ and $P_2, P_3, P_4, P_5 \in \mathcal{N}(3,1,7)$. Then, for any $D = Q^e P_1^{e_1} P_2^{e_2} P_3^{e_3} P_4^{e_4} P_5^{e_5}$ with $e, e_i \in \{1,2\}$ and $e_1 + e_2 + e_3 + 2e_4 \equiv 0 \mod 3$, we have $(\frac{Q}{P_i})_3 = 1$

Hwanyup Jung

for $1 \leq i \leq 5$, so $k(\sqrt[3]{D})$ is a real cubic function field whose Hilbert 3-class field tower is infinite by Theorem 3.2.

THEOREM 3.5. Assume that q is odd with $q \equiv 1 \mod 3$. Let F be a real cubic function field with $\omega(D_F) \geq 5$. If there exist $Q_1, Q_2 \in \pi(D_F)$ whose degrees are divisible by 3 and $P_i \in \pi(D_F) \setminus \{Q_1, Q_2\}$ such that $(\frac{Q_1}{P_i})_3 = (\frac{Q_2}{P_i})_3 = 1 \ (1 \leq i \leq 3)$, then F has infinite Hilbert 3-class field tower.

Proof. By applying Lemma 2.2 with $D_1 = Q_1$ and $D_2 = Q_2$, we see that F has infinite Hilbert 3-class field tower.

EXAMPLE 3.6. Let $k = \mathbb{F}_7(T)$ and $\mathbb{A} = \mathbb{F}_7[T]$. Take $P_1 = T$, $P_2 = T + 1$, $P_3 = T^2 + 1$, $Q_1 = T^3 + T^2 + 1$ and $Q_2 = T^3 + T + 1$. By simple computations, we see that $(\frac{Q_1}{P_i})_3 = (\frac{Q_2}{P_i})_3 = 1$ for $1 \le i \le 3$. Then, for any $D = P_1^{e_1} P_2^{e_2} P_3^{e_3} Q_1^{f_1} Q_2^{f_2}$ with $e_i, f_j \in \{1, 2\}$ and $e_1 + e_2 + 2e_3 \equiv 0 \mod 3$, $k(\sqrt[3]{D})$ is a real cubic function field whose Hilbert 3-class field tower is infinite by Theorem 3.5.

THEOREM 3.7. Assume that q is odd with $q \equiv 1 \mod 3$. Let F be a real cubic function field with non-special D_F . Assume that $\omega(D_F) =$ 6 or $\omega(D_F) = 7$. If there exist $Q_1, Q_2, Q_3 \in \pi(D_F)$ whose degrees are divisible by 3 and $P_i \in \pi(D_F) \setminus \{Q_1, Q_2, Q_3\}$ such that $(\frac{Q_1Q_2}{P_i})_3 =$ $(\frac{Q_1Q_3}{P_i})_3 = 1$ ($1 \leq i \leq 3$), then F has infinite Hilbert 3-class field tower.

Proof. By applying Lemma 2.2 with $D_1 = Q_1Q_2$ and $D_2 = Q_1Q_3$, we see that F has infinite Hilbert 3-class field tower.

EXAMPLE 3.8. Let $k = \mathbb{F}_7(T)$ and $\mathbb{A} = \mathbb{F}_7[T]$. Take $P_1 = T$, $P_2 = T+2$, $P_3 = T^2+1$, $Q_1 = T^3+T+1$, $Q_2 = T^3+T^2+1$ and $Q_3 = T^3+T-1$. By simple computations, we see that

$$\left(\frac{Q_i}{P_1}\right)_3 = \left(\frac{Q_i}{P_3}\right)_3 = 1 \ (1 \le i \le 3), \ \left(\frac{Q_1}{P_2}\right)_3 = \eta^2, \ \left(\frac{Q_2}{P_2}\right)_3 = \left(\frac{Q_3}{P_2}\right)_3 = \eta.$$

Hence, we have

$$\left(\frac{Q_1Q_2}{P_i}\right)_3 = \left(\frac{Q_1Q_3}{P_i}\right)_3 = 1 \ (1 \le i \le 3).$$

Then, for any $D = P_1^{e_1} P_2^{e_2} P_3^{e_3} Q_1^{f_1} Q_2^{f_2}$ with $e_i, f_j \in \{1, 2\}$ and $e_1 + e_2 + 2e_3 \equiv 0 \mod 3$, $k(\sqrt[3]{D})$ is a real cubic function field whose Hilbert 3-class field tower is infinite by Theorem 3.7.

522

References

- J. Ahn and H. Jung, Hilbert 2-class field towers of imaginary quadratic function fields. J. Chungcheong Math. Soc. 23 (2010), no. 4, 699–704.
- S. Bae, S. Hu, and H. Jung, The generalized Rédei-matrix for function fields. Finite Fields Appl. 18 (2012), no. 4, 760–780.
- [3] H. Jung, Hilbert 3-class field towers of imaginary cubic function fields. J. Chungcheong Math. Soc. 26 (2013), no. 1, 161–166.
- [4] M. Rosen, The Hilbert class field in function fields. Exposition. Math. 5 (1987), no. 4, 365–378.
- [5] _____, Number theory in function fields. Graduate Texts in Mathematics 210 (2002), Springer-Verlag, New York.
- [6] R. Schoof, Algebraic curves over F₂ with many rational points. J. Number Theory 41 (1992), no. 1, 6–14.
- [7] J. L. Yucas, Irreducible polynomials over finite fields with prescribed trace/prescribed constant term. Finite Fields Appl. 12 (2006), no. 2, 211–221.

*

Department of Mathematics Education Chungbuk National University Cheongju 361-763, Republic of Korea *E-mail*: hyjung@chungbuk.ac.kr